COVID-19

04.08.2023

Lipopolisacharydy spiruliny hamują wzrost guza


Źródło: Oncology Reports; Autor: Hiromi Okuyama, z Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan

Lipopolisacharydy uzyskane ze spiruliny (Arthrospira) hamują wzrost guza nowotworowego w sposób zależny od receptora TLR4 poprzez zmianę środowiska cytokin z interleukiny-17/interleukiny-23 na interferon-γ. Badanie przeprowadzono na modelu zwierzęcym.

Kategoria: General
Napisał: admin

Lipopolisacharydy spiruliny hamują wzrost guza

Hiromi Okuyama Akira Tominaga Satoshi Fukuoka Takahiro Taguchi Yutaka Kusumoto Shiro Ono
Oncology Reports; 2017 Feb; 37(2): 684–694.

Spirulina lipopolysaccharides inhibit tumor growth

Spirulina platensis to Gram-ujemna sinica (niebiesko-zielona alga*) o zdolnościach do tlenowej fotosyntezy. Od czasów cywilizacji Azteków w Meksyku organizmy te były szeroko wykorzystywane jako suplementy diety ze względu na ich walory odżywcze oraz były stosowane dla ich właściwości terapeutycznych. Lipopolisacharydy uzyskane ze spiruliny nie są toksyczne w odróżnieniu od np. lipopolisacharydów z Salmonella abortus, ale ich wpływ na produkcję cytokin lub aktywność przeciwnowotworową nie był dotychczas bliżej zbadany. Dlatego bardzo interesujące byłoby zbadanie, w jaki sposób lipopolisacharydy ze spiruliny platensis wpływają na wzrost guza i wytwarzanie cytokin zapalnych in vivo.

W badaniach przeprowadzonych na modelu mysim wykazano, że leczenie lipopolisacharydami ze spiruliny zwiększyło poziomy interferonu gamma (IFN-γ) w surowicy we wczesnych stadiach rozwoju nowotworu i obniżyło poziomy interleukin 17 i 23 w surowicy w późniejszych stadiach. Lipopolisacharydy ze spiruliny indukowały również wytwarzanie IL-12 w sposób zależny od limfocytów T CD4, oraz indukowały wytwarzanie IFN-γ głównie przez limfocyty T CD4.

W podsumowaniu autorzy stwierdzają: lipopolisacharydy ze spiruliny hamowały wzrost guza poprzez obniżanie poziomu IL-17/IL-23 w surowicy z jednoczesną indukcją IFN-γ przez receptory TLR4. Ponadto lipopolisacharydy ze spiruliny wykazywały ograniczoną indukcję lub brak indukcji IL-6 i IL-23 oraz zmieniały środowisko cytokin w organizmie gospodarza z nowotworem z typu Th17 na Th1. W ten sposób potwierdziliśmy znaczenie równowagi między poziomami IFN-γ i IL-17/IL-23 w regulacji wzrostu guza. Warto zauważyć, że lipopolisacharydy ze spiruliny były w stanie zahamować spontaniczny rozwój guzów sutka. Nasze wyniki dostarczają nowych informacji na temat wykorzystania immunomodulatorów działających poprzez receptory TLR w immunoterapii raka.


* Sinice Arthrospira platensis vel maxima, kiedyś były zaliczane do mikroalg, obecnie są zaliczane do prokariotycznych (tj. nie posiadających jądra komórkowego) cyjanobakterii. Spirulina to nazwa handlowa skoncentrowanych suszonych sinic Arthrospira platensis. Ze spiruliny uzyskuje się trzy rodzaje ekstraktów: ekstrakt proteinowy (czyli białkowy i właściwościach odżywczych), ekstrakt fikocyjaninowy (barwnikowy) oraz ekstrakt lipopolisacharydowy (o właściwościach immunomodulujących).

Okuyama H, Tominaga A, Fukuoka S et al. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ Oncology Reports; 2017 Feb; 37(2): 684–694.

Zmienność wirusa SARS-CoV-2

Do tej pory zaobserwowano różne warianty wirusa wywołującego COVID-19. Pierwszym był wariant alfa.

Kolejnym wariant delta koronawirusa SARS CoV-2 wywołuje więcej zakażeń i rozprzestrzenia się szybciej i szerzej niż wcześniejsze formy wirusów, które wywołują COVID-19. U osób niezaszczepionych wariant delta może powodować cięższy przebieg choroby niż wcześniejsze formy wirusa. Obecnie około 90 % wszystkich zakażeń COVID-19 wywołuje właśnie wariant delta.

Omikron to kolejny nowy wariant wirusa wywołującego COVID-19

Do tej pory mieliśmy do czynienia głównie z wariantami alfa i delta wirusa:

  • Wariant alfa, który wystąpił najwcześniej i na który opracowano w ubiegłym roku obecnie stosowane szczepionki i szczepienie chroni w ponad 90 % przypadków przed zakażeniem tym wariantem wirusa.
  • Wariant delta, ten który wystąpił późną wiosną i w połowie tego roku i szczepienie chroni w ok. 70 % przypadków przed zakażeniem tym wariantem wirusa.
  • Wariant omikron, który się pojawił właśnie teraz późną jesienią i który stanowi jeszcze wielką niewiadomą. Naukowcy uważają jednak, że raczej nie będzie on bardziej groźny niż dotychczasowe warianty.

Warto podkreślić, że:

  • Szczepienie wciąż jest najlepszym sposobem na zmniejszenie ryzyka zakażenia wirusem, włączając wariant delta i wariant omikron wirusa, powodującego COVID-19.
  • Szczepienia są wysoce skuteczne w zapobieganiu ciężkim zachorowaniom, takim które wymagałyby leczenia szpitalnego i zagrażały życiu. Dotyczy to również nowych wariantów wirusa.
  • Osoby w pełni zaszczepione, u których jednak doszło do zakażenia nowymi wariantami wirusa, chorują krócej.
  • Zaszczepienie i noszenie maseczki w zamkniętych miejscach publicznych, zmniejsza rozprzestrzenianie się nowych wariantów wirusa.

Aby szczepienie było optymalnie skuteczne niezbędny jest sprawny układ odporności. Dlatego warto sięgnąć po Immulinę. W tej chwili są dostępne w naszych aptekach syropy dla dzieci Immulina Plus i Immulina +D3 oraz kapsułki dla dorosłych i młodzieży  Immulina Plus forte i Immulina +D3.

Odporność poszczepienna

Global News rozmawiało ze specjalistą od chorób zakaźnych i mikrobiologiem – dr Donaldem Vinhem z McGill University Health Center. Ekspert twierdzi, że ochrona uzyskana w wyniku przyjęcia szczepionki Pfizera może trwać około dwóch miesięcy, a zyskuje się ją już po 12 dniach od przyjęcia pierwszej dawki. Dla uzyskania pełnej odporności po szczepieniu wymagana jest druga dawka szczepionki. Wtedy jej skuteczność wynosi 95%.

Z kolei w ciągu dwóch tygodni od otrzymania pierwszej dawki Moderny zyskuje się ochronę na okres trzech miesięcy. Tutaj także dla pełnej odporności wymagana jest druga dawka szczepienia, wówczas skuteczność szczepionki to 94%. Niestety nie jest jeszcze jasne, czy szczepionki na COVID-19 Pfizera lub Moderny zapobiegają transmisji wirusa na innych.

Trzeba podkreślić, że wszystkie szczepionki były opracowywane na jeden z pierwszych wariantów – wariant alfa wirusa SARS-CoV-2. Opracowano dwa główne rodzaje szczepionek: szczepionki wektorowe (np. szczepionka Astra Zeneca) oraz szczepionki oparte o kwas rybonukleinowy mRNA (np. szczepionki Pfizera i Moderny).

Szczepionki wektorowe wykorzystują część wirusa, który został zmodyfikowany, tak aby pozbawić go zjadliwości i żeby nie stanowił zagrożenia dla zdrowia i nie był zakaźny. Do komórek organizmu wprowadzany jest materiał genetyczny, który instruuje organizm, jak wytworzyć białko COVID-19. Gdy komórki w ciele człowieka już wytworzą białko SARS-CoV-2, uruchamia się odpowiedź immunologiczna, która je zwalcza. Kod zawarty w szczepionce zawiera wyłącznie informacje potrzebne do wytworzenia pojedynczego białka COVID-19, jednak nie powoduje choroby.

Szczepionka mRNA wykorzystuje kod białka kolca wirusa, który trafiając do komórek organizmu, zaczyna produkować właściwe białko. Dzięki temu układ odpornościowy uaktywnia ochronną odpowiedź immunologiczną bez wywołania choroby. Białko kolca jest strukturą złożoną i warunkuje m.in. zjadliwość wirusa. Obecne warianty omikron wirusa zmutowały właśnie w zakresie białka kolca, co z jednej strony czyni je mniej zjadliwymi, a z drugiej strony zmniejsza skuteczność szczepionek mRNA.

Odporność po przechorowaniu

Odporność na koronawirusa można uzyskać po przechorowaniu COVID-19. Organizm ma wówczas kontakt z całą cząsteczką wirusa i dochodzi do stymulacji odpowiedzi odpornościowej. Jest to tzw. odporność ozdrowieńców. Taki sposób nabycia odporności wiąże się jednak z ryzykiem. U każdego człowieka infekcja może przebiegać inaczej. U większości osób daje jedynie niewielkie objawy. Jednak u części zagraża zdrowiu i życiu.

Badanie przeprowadzone przez naukowców z Washington University, które zostało opublikowane w czasopiśmie Nature, wskazuje, że komórki, zachowujące pamięć o przebytym wirusie, przez cały czas pozostają w szpiku kostnym, aby móc w każdej chwili produkować przeciwciała. Z kolei drugie badanie sugeruje, że komórki B – odpowiedzialne za pamięć immunologiczną, rok po infekcji cały czas są na etapie dojrzewania i wzmacniania.

Pamiętajmy, że przechorowanie COVID-19 nie chroni w 100% przed ponownym zakażeniem, chociaż jak pokazują liczne badania, może to na pewien czas ograniczać jego ryzyko. Aby uchronić się przed reinfekcją wirusa, należy dbać o odporność. Zachęca się także do przyjęcia szczepionki przeciwko COVID-19. Nie zabezpiecza ona całkowicie przed zakażeniem, ale łagodzi przebieg kliniczny choroby i znacznie zmniejsza ryzyko śmierci, przyczyniając się tym samym do poprawy sytuacji zdrowotnej na świecie. Zwlekanie z decyzją o zaszczepieniu to dawanie szansy wirusowi, by w sposób niekontrolowany rozprzestrzeniał się i zmutował.

Odporność populacyjna (zbiorowa)

Światowa Organizacja Zdrowia (WHO) podaje, że odporność zbiorowa na koronawirusa występuje, gdy większość populacji jest odporna na zakażenie chorobą. W jaki sposób rozwija się taka „ochrona” całej populacji? Dzieje się to na dwa sposoby. Pierwszym z nich jest przebycie choroby i wytworzenie naturalnej odporności, a drugim - zaszczepienie i wykształcenie odporności poszczepiennej u większości społeczeństwa.

By zahamować lub spowolnić rozprzestrzenianie się wirusa, potrzebna jest odporność na COVID-19 u 70 – 90% populacji. Taki poziom odporności na koronawirusa pomógłby chronić osoby narażone na ciężki przebieg choroby, czyli między innymi starszych ludzi, niemowlęta, osoby z osłabionym układem odpornościowym. Główny naukowiec WHO - Soumya Swaminathan - twierdzi , że odporność stadna na koronawirusa najpewniej nie została osiągnięta w 2021 ani 2022 roku. Ze względu na ograniczony dostęp do szczepionek w niektórych krajach i sceptycyzm części społeczeństwa, proces szczepień może potrwać dłużej, nawet do jesieni 2023 roku.

Do czasu wykształcenia się zbiorowej odporności na koronawirusa, warto nadal zachowywać środki bezpieczeństwa. Noszenie maseczek, utrzymywanie dystansu fizycznego i dezynfekcja rąk z pewnością pozwolą ochronić wielu ludzi, nawet jeśli część z nas otrzyma już szczepionkę.

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

08.08.2023

Źródło: Nutrients Autorzy: van Steenwijk H, Bast, A and de Boer A.

Beta-glukany pochodzące grzybów to bioaktywne związki polisacharydowe o długim łańcuchu, nie rozpuszczalne w wodzie i o właściwościach immunomodulujących. Poznanie działania i funkcji beta-glukanów, które od wieków są stosowane w tradycyjnej medycynie, rozwija się dzięki nowoczesnym metodom immunologicznym i biotechnologicznym.

04.08.2023

Źródło: Oncology Reports; Autor: Hiromi Okuyama, z Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan

Lipopolisacharydy uzyskane ze spiruliny (Arthrospira) hamują wzrost guza nowotworowego w sposób zależny od receptora TLR4 poprzez zmianę środowiska cytokin z interleukiny-17/interleukiny-23 na interferon-γ. Badanie przeprowadzono na modelu zwierzęcym.

26.07.2023

Źródło: BBC Health, Autor: Michelle Roberts

Naukowcy twierdzą, że od czasu COVID nastąpił niezwykły wzrost liczby dzieci i nastolatków na całym świecie, u których zdiagnozowano cukrzycę typu 1. Hipoteza głosi, że narażenie na niektóre zarazki w dzieciństwie może pomóc w ochronie przed wieloma chorobami, w tym przed cukrzycą. Blokady i dystans fizyczny podczas COVID oznaczały, że wiele dzieci nie miało wystarczającej ekspozycji na zarazki i straciło tę dodatkową ochronę.