Układ odporności

17.01.2024

COVID Impacts: Immune Dysfunction


Source: Memorial Sloan Kettering Cancer Center Library / LibGuides / COVID Impacts / Immune Dysfunction

Detailed information and resources on the long-term health consequences of COVID-19 infection and the broad social impacts of the COVID-19 pandemic.

One of the most concerning long-term effects of COVID-19 is the dysregulation and dysfunction of the immune system.

Kategoria: General
Napisał: admin
Memorial Sloan Kettering Library

COVID Impacts: Immune Dysfunction

Szczegółowe informacje i zasoby na temat długoterminowych konsekwencji zdrowotnych zakażenia COVID-19 oraz szerokich skutków społecznych pandemii COVID-19.

One of the most concerning long-term impacts of COVID-19 is immune dysregulation and dysfunction. Immune system impacts were heavily documented, even in the first waves of the pandemic, however there was a lack of understanding as to what exactly COVID-19 infections were doing to the immune system, and what that might mean both during acute infection and long-term.

 
Early Hypotheses

Early on in the pandemic, there were two main hypotheses for the pathophysiology of COVID-19 severe disease and death: hyperactive immune system and immune system failure.

 
Hyperactive Immune System

The first was due to an overactive immune system. Early on it was noted that many patients with severe COVID-19 ended up developing ARDS (acute respiratory distress syndrome). This was reminiscent of the cytokine release syndrome (CRS) - induced ARDS and secondary hemophagocytic lymphohistiocytosis (sHLH) that had been observed previously in patients with SARS-CoV and MERS-CoV (it also is a common adverse event in cancer patients treated with CAR-T cell therapies).

Therefore it lead researchers to believe that severe infections were the results of an overactive immune response caused by excessive inflammatory cytokines, which lead to inflammatory lung and vascular injuries, and that death was from subsequent respiratory failure or coagulopathy.

 
Immune System Failure

The second hypothesis took the exact opposite hypothesis, that COVID-19 caused immune collapse. In this hypothesis, COVID-19 causes the patient's protective immunity to collapse, causing uncontrolled viral replication and dissemination which lead to cytotoxicity and death. Support for this contrasting theory was based on the observed progressive and profound lymphopenia, often to levels seen in patients with AIDS.

More recent research has concluded that COVID-19 causes dysregulation to both the innate and the adaptive immune systems. Paradoxically, in COVID-19 pneumonia, the innate immune system fails to mount an effective antiviral response while also inducing potentially damaging inflammation.


COVID-19 Alters Both Innate and Adaptive Immunity

The immune system is made up of two parts: the innate, (general) immune system and the adaptive (specialized) immune system. These two systems work closely together and take on different tasks.

 
Innate Immunity

Responsible for the initial immune response and antiviral activity, the innate system functions as a single defense mechanism, crucial for host response and illness protection.

Severe COVID cases were found to have decreased production of early immune responses (INF) which in turn lead to the virus replicating and causing severe cellular lung damage. Not only is was the antiviral response of IFN delayed and reduced, but it was also accompanied an overexaggerated inflammatory response with excessive cytokines. This resulting hyperinflammation caused edema, fibrosis, and thromboses in the lungs that ultimately lead to hypoxia, acute respiratory distress syndrome (ARDS) and death.

 
Adaptive Immunity

The adaptive immune system is critical for the development of efficient host responses to invading pathogens as well as immunological memory for future infections of similar pathogens.

Although COVID-19 patients may exhibit elevated levels of inflammatory cytokines compared to non-critically-ill patients, a study comparing the immune profiles of COVID-19 and influenza noted that while a 3–4% subset of COVID-19 patients exhibited hyperinflammation characteristic of a cytokine storm, they more commonly demonstrated immunosuppression.

CD4+ helper T cells and CD8+ cytotoxic T cells have been identified as crucial in the immunologic response to SARS-CoV-2 infection. CD4+ T cells are responsive to the virus's spike protein, and the presence of CD8+ T cell expansion in bronchoalveolar lavage is correlated with illness moderation. However, one of the most remarkable characteristics of immune dysregulation in COVID-19 is an immense depletion of CD4+ and CD8+ T cells associated with disease severity.

While lymphopenia is observed in other respiratory viral illnesses such as influenza A H3N2 viral infection, COVID-19 induced lymphocytic depletion is distinctive for its magnitude and longevity. Additionally, CD8+ T cells, crucial for their cytotoxic activity against virally infected cells, may experience the more stark reduction.

The lack of intense lymphocytic infiltration found in the lungs of critical COVID-19 patients demonstrates that the peripherally observed lymphopenia may be occurring through a mechanism beyond simply recruitment to the infection site.

Prezentacja antygenu

Prezentacja antygenu – termin obejmujący znaczeniem mechanizmy odpornościowe, które polegają na „ukazaniu” antygenu limfocytom T przy udziale cząsteczek MHC. Głównym celem prezentacji antygenów jest rozwinięcie odpowiedzi swoistej na dany antygen. Charakterystyczne jest to, że antygeny nie są przedstawiane w formie pierwotnej (natywnej), lecz w formie przetworzonej.

Ze względu na zróżnicowanie cząsteczek MHC*, prezentacja antygenu może się przejawiać w jednej z trzech postaci:


*MHC - ang. major histocompatibility complex - główny układ zgodności tkankowej. Stanowi go zespół białek odpowiedzialnych za prezentację antygenów limfocytom T.

  • Cząsteczki MHC klasy I, które prezentują antygeny limfocytom Tc (cytotoksycznym), biorą udział w obronie przeciwko patogenom wewnątrzkomórkowym, np. wirusom. Jeżeli taki antygen zostanie rozpoznany jako obcy, komórka prezentująca będzie zabita, jego obecność na cząsteczce MHC klasy I świadczy bowiem o istnieniu patogenu we wnętrzu komórki. Zabijając komórkę, limfocyt Tc zabija zwykle także występującego w niej pasożyta. Można powiedzieć, że w ten sposób jednostka (komórka) jest poświęcana dla dobra ogółu (organizmu).
  • Cząsteczki MHC klasy II, które prezentują antygeny limfocytom Th (pomocniczym), nie wywołują śmierci komórki prezentującej antygen. W tym przypadku taka komórka rozpoczyna wydzielanie cytokin, które pobudzają limfocyt Th. Limfocyty Th są istotnymi komórkami regulującymi odpowiedź odpornościową. Dzięki temu cząsteczki MHC klasy II uczestniczą w pobudzeniu innych komórek, za pośrednictwem limfocytów T pomocniczych.
  • Prezentacja krzyżowa jest mechanizmem umożliwiającym pobudzenie zarówno limfocytów Th, jak i limfocytów Tc, przy czym biorą w niej udział zarówno cząsteczki MHC klasy I, jak i klasy II. Nie jest to jednak prosta kombinacja dwóch poprzednio wymienionych rodzajów prezentacji antygenu. Zachodzi ona w charakterystyczny sposób z udziałem określonych komórek, które prezentują antygeny jednocześnie na MHC obu klas i nie są zabijane przez limfocyty Tc.

2 Makrofagi i komórki dendrytyczne należą do tzw. komórek prezentujących antygen (Antigen Presenting Cells).

 

Limfocyty – komórki T i komórki B

Limfocyty należą do krwinek białych (leukocytów) i pochodzą ze szpiku kostnego, ale migrują do różnych części układu limfatycznego, takich jak węzły chłonne, śledzona czy grasica. Są dwa główne rodzaje limfocytów: komórki T i komórki B. Układ limfatyczny obejmuje również system transportowy – układ naczyń limfatycznych – służący do transportu oraz magazynowania limfocytów. Układ limfatyczny zaopatruje/dostarcza limfocyty naszemu organizmowi i odfiltrowuje tkanki z martwych komórek i mikroorganizmów, które nas zaatakowały, takich jak np. bakterie.

Na powierzchni każdego limfocyta znajdują sie receptory, które umożliwiają im rozpoznawanie obcych substancji. Receptory te są bardzo wyspecjalizowane i pasują tylko do jednego swoistego antygenu. Aby to zrozumieć działanie takich specyficznych receptorów pomyślcie o ręce, która może chwycić tylko jeden rodzaj przedmiotu, na przykład tylko jabłko. Taka ręka byłaby prawdziwym mistrzem w chwytaniu jabłek, ale nie byłaby w stanie chwycić cokolwiek innego. W naszym organizmie taki pojedynczy receptor odpowiadałby ręce, która wychwytuje swoje „jabłka”. Limfocyty przemierzają nasz organizm póki nie natrafią na antygen, który ma właściwy kształt i  rozmiar pasujący do ich specyficznego receptora. Wydaje się, że może fakt, iż receptory każdego limfocyta mogą pasować tylko do jednego szczególnego rodzaju antygenu będzie stanowił ograniczenie, ale organizm radzi sobie z tym dzięki produkcji takiej mnogości różnorodnych rodzajów limfocytów, że układ odporności jest w stanie rozpoznać niemal każdego intruza.

Limfocyty T

Limfocyty (komórki) T tworzą dwie główne i odmienne grupy: limfocyty pomocnicze T (helper cells) i limfocyty T zabójcy (killer cells). Nazwa limfocyty T pochodzi od łacińskiej nazwy grasicy – thymus – gruczołu położonego za mostkiem. Limfocyty T powstają w szpiku kostnym,  następnie migrują do grasicy gdzie dojrzewają.

Limfocyty pomocnicze Th (helper) stanowią główną siłę napędową i regulującą układ odporności. Ich podstawowym zadaniem jest aktywacja limfocytów B oraz limfocytów T zabójców. Jednak limfocyty pomocnicze Th same muszą być wcześniej aktywowane. Dzieje się to wówczas, gdy makrofag lub komórka dendrytyczna, która wcześniej pochłonęła intruza, przemieści się do pobliskiego węzła chłonnego i zaprezentuje informację o załapanym patogenie. Komórka żerna (fagocyt) przedstawia fragment antygenu intruza na swej powierzchni w procesie znanym prezentacją antygenu. Limfocyt pomocniczy Th zostaje aktywowany, gdy jego receptor rozpozna antygen. Raz aktywowany limfocyt pomocniczy Th zaczyna się dzielić i produkować białka, które aktywują limfocyty B i T jak również inne komórki układu odporności.

Limfocyt T zabójca (killer cell) jest wyspecjalizowany w atakowaniu komórek organizmu zakażonych wirusami, a czasem bakteriami. Atakuje również komórki raka. Limfocyt T zabójca posiada receptory do wyszukiwania każdej komórki, która pasuje. Komórka, jeśli jest zakażona, jest szybko zabijana. Zakażone komórki są rozpoznawane dzięki drobnym śladom intruza - antygenowi, który może być wykryty na ich powierzchni.

Limfocyty B

Limfocyt B poszukuje antygenu pasującego do jego receptorów. Jeśli znajdzie taki antygen to przyłączy się do niego i wewnątrz limfocyta B jest uruchamiany sygnał spustowy. Ale żeby zostać w pełni aktywowanym, limfocyt B potrzebuje jeszcze białka produkowanego przez limfocyty pomocnicze Th. Gdy to nastąpi limfocyt B zaczyna się dzielić produkując swoje klony komórkowe i w czasie tego procesu powstają dwa nowe typy komórek: komórki plazmatyczne i limfocyty pamięci B.

Komórka plazmatyczna jest wyspecjalizowana w produkcji  swoistych białek zwanych przeciwciałami, które będą oddziaływać na taki antygen, który pasuje do receptora limfocyta B. Przeciwciała uwalniane przez komórki plazmatyczne potrafią wyszukać „intruzów” i pomóc w ich zniszczeniu. Komórki plazmatyczne produkują przeciwciała w niezwykłym tempie i potrafią uwalniać dziesiątki tysięcy przeciwciał na sekundę. Gdy Y-kształtne przeciwciała napotkają pasujący antygen, przyłączają się do niego. Przyłączone przeciwciała służą jako „smakowita otoczka” dla komórek żernych, takich jak makrofagi. Przeciwciała neutralizują również toksyny i unieszkodliwiają wirusy, zapobiegając zakażaniu przez nie nowych komórek. Każde ramię Y-kształtnego przeciwciała może przyłączyć się do różnego antygenu. Tak więc gdy jedno ramię łączy się z jednym antygenem na jednej komórce, to drugie ramie może przyłączać się do innej komórki. W ten sposób patogeny są zbierane w większe grupy, które łatwiej jest sfagocytować komórkom żernym. Poza tym bakterie i inne patogeny pokryte przeciwciałami są łatwiejszym celem na atak białek układu dopełniacza.

Limfocyty pamięci B (komórki pamięci B) są drugim rodzajem komórek produkowanych przez kategorię limfocytów B. Komórki te mają wydłużony okres życia i dlatego mogą „pamiętać” swoistych intruzów. Również kategoria limfocytów T może produkować komórki pamięci, mają one nawet dłuższy okres życia niż limfocyty B pamięci. Gdy intruz próbuje powtórnie zaatakować organizm, to limfocyty pamięci B oraz T, które już go znają, pomagają aktywować układ odporności znacznie szybciej. Najeźdźcy zostają wprost “wymieceni”, zanim zakażona osoba poczuje jakiekolwiek objawy. Organizm został uodporniony na intruza.

Aktywacja limfocytów pamięci B

 

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

17.01.2024

Source: Memorial Sloan Kettering Cancer Center Library / LibGuides / COVID Impacts / Immune Dysfunction

Detailed information and resources on the long-term health consequences of COVID-19 infection and the broad social impacts of the COVID-19 pandemic.

One of the most concerning long-term effects of COVID-19 is the dysregulation and dysfunction of the immune system.

08.08.2023

Source: Nutrients Authors: van Steenwijk H, Bast, A and de Boer A.

Beta-glucans derived from mushrooms are bioactive long-chain polysaccharide compounds, insoluble in water and with immunomodulatory properties. Knowledge of the action and functions of beta-glucans, which have been used in traditional medicine for centuries, is developing thanks to modern immunological and biotechnological methods.

04.08.2023

Source: Oncology Reports; Authors: Hiromi Okuyama Akira Tominaga, z Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan

Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ