Lato to czas, kiedy nasza odporność jest wystawiona na próbę. W lecie częściej chorujemy na zapalenie gardła, anginę i infekcje układu moczowego. Opalanie i związana z tym ekspozycja na promienie UV, może wyzwalać opryszczkę. Dlatego w lecie też należy dbać o odporność. Teraz możemy to zrobić nie tylko mądrze, ale też za znacznie niższą cenę!


  Sprawdź nową wiosenną promocję Immuliny »»  

Budowa układu odporności i działanie jego elementów

24.04.2019

Polimorfizmy genu MTHFR a szczepienia ochronne


Źródło: Medycyna Praktyczna Autor:Mateusz Biela

Jednym z najbardziej „popularnych” genów ostatnich miesięcy stał się gen MTHFR. Za sprawą nieprawdziwych informacji, szerzących się w internecie w zupełnie niekontrolowany sposób, wprowadzono w błąd bardzo wielu ludzi. Zwłaszcza młode matki, spędzające całe dnie i noce na czytaniu absolutnie wszystkiego, co mogłoby w jakikolwiek sposób dotyczyć ich pociech, padły ofiarą zamieszania. Postanowiliśmy zatem porządnie się rozprawić z mitami, jakie narosły wokół kontrowersyjnego genu MTHFR.

Kategoria: General
Napisał: admin

Mateusz Biela1, Agnieszka Matkowska-Kocjan2, Robert Śmigiel1

Polimorfizmy genu MTHFR a szczepienia ochronne

1Katedra Pediatrii, Zakład Propedeutyki Pediatrii i Chorób Rzadkich Uniwersytetu Medycznego we Wrocławiu
2Klinika Pediatrii i Chorób Infekcyjnych Uniwersytetu Medycznego we Wrocławiu, zastępca Redaktora Naczelnego „Medycyny Praktycznej – Szczepienia”

Lekarze prowadzący szczepienia ochronne u dzieci coraz częściej spotykają się z nowym zjawiskiem wśród osób prezentujących postawy antyszczepionkowe lub wątpiących w bezpieczeństwo szczepień – wykonywaniem badań oceniających wybrane polimorfizmy genu MTHFR w celu sprawdzenia, czy dziecko może być szczepione. W przypadku potwierdzenia obecności polimorfizmu w tym genie rodzice żądają zwolnienia z wykonywania szczepień lub ułożenia indywidualnego schematu, który będzie bezpieczny dla ich dziecka w aspekcie tego wariantu genetycznego. Pierwsze spotkanie z taką sytuacją zazwyczaj budzi u lekarzy zaskoczenie, które jest jak najbardziej uzasadnione. W oficjalnych wytycznych dotyczących szczepień ochronnych, charakterystykach produktów leczniczych szczepionek, dokumentach prawnych dotyczących immunizacji czynnej czy formularzach kwalifikacji do szczepień nie ma bowiem żadnej wzmianki o genie MTHFR i jego polimorfizmach. Wystarczy jednak wpisać do przeglądarki internetowej kombinację słów „MTHFR szczepienia”, aby zrozumieć źródło niepokoju pacjentów. W internecie istnieje wiele niemedycznychnienaukowych stron, na których można znaleźć informacje o rzekomym zwiększonym ryzyku wystąpienia niepożądanych odczynów poszczepiennych (NOP) u osób z polimorfizmem w genie MTHFR, na przykład: „Bezpieczeństwo szczepionek nie jest sprawdzane na osobach z polimorfizmami odpowiedzialnymi za detoksykację organizmu ani na osobach z mutacjami genu MTHFR”, „Osoby, które mają polimorfizmy genetyczne (np. genu MTHFR), są na całym świecie zwolnione ze szczepień w normalnym kalendarzu”, „W innych krajach szczepienia dzieci, które rodzą się z mutacją MTHFR, są zabronione, gdyż w wielu przypadkach powodują autyzm”. Autorka jednego z blogów powołuje się na tezy amerykańskiego lekarza medycyny alternatywnej, który twierdzi, że polimorfizm genu MTHFR wpływa na detoksykację i jego obecność zwiększa podatność na toksyczność (np. „toksyn bakteryjnych”) znajdujących się w szczepionkach. Biorąc pod uwagę, że przeciętny rodzic jest w stanie znaleźć w komputerze lub smartfonie wszystkie te informacje w ciągu kilku sekund, jasne jest, skąd się biorą obawy pacjentów. Dodatkowo, oprócz znanych laboratoriów oferujących oznaczenie polimorfizmów w genie MTHFR, istnieją również laboratoria działające przez internet, które umożliwiają pacjentowi samodzielne pobranie materiału do badań (próbka krwi lub wymaz z policzka) i wysyłkę do laboratorium, a następnie uzyskanie wyniku badania za pośrednictwem poczty. Jednoznacznie można stwierdzić, że biznes prywatnych laboratoriów genetycznych rozwija się w wyniku tzw. marketingu szeptanego (rozpowszechnianie w internecie informacji, których nie można łatwo zweryfikować). Znamienne jest również, że na stronach laboratoriów nie ma informacji na temat przydatności takiego oznaczenia w aspekcie bezpieczeństwa szczepień (wśród celów tego badania wymienia się uzyskanie informacji na temat metabolizmu kwasu foliowego, profilaktykę wad cewy nerwowej, profilaktykę miażdżycy i zakrzepicy oraz uzyskanie informacji o wskazaniach do zwiększenia zawartości choliny w diecie).

Jaką funkcję pełni gen MTHFR?

Gen MTHFR znajdujący się na chromosomie 1. koduje enzym o tej samej nazwie – reduktazę metylenotetrahydrofolianową.1 Enzym ten katalizuje reakcję redukcji 5,10-metylenotetrahydrofolianu do 5-metylotetrahydrofolianu, a produkt tej reakcji jest potrzebny do kolejnej reakcji, czyli przekształcenia aminokwasu homocysteiny do metioniny.1,2 S-adenozylometionina, która jest konwertowana z metioniny, stanowi w organizmie ludzkim bardzo ważne źródło grup metylowych niezbędnych w procesach regulacji funkcji kwasów nukleinowych, białek i innych cząsteczek biologicznych, które mają istotne znaczenie w procesie rozwoju prenatalnego, a potem całego życia.1,2

Jakie jest znaczenie kliniczne polimorfizmów w genie MTHFR?

Na początku warto przypomnieć, co to jest polimorfizm. Polimorfizm sekwencji nukleotydowej danego genu oznacza zmienność alleliczną w populacji, a inaczej mówiąc, występowanie różnych odmian tego samego genu z częstością >1% w populacji ogólnej. 90% całej zmienności allelicznej występującej w ludzkim genomie stanowią polimorfizmy pojedynczego nukleotydu (z takim mamy do czynienia w przypadku genu MTHFR). W częściach kodujących genów człowieka (eksony) występuje około 20 000 takich wariantów allelicznych. Wariant polimorficzny może prowadzić do zmiany sekwencji aminokwasowej białka, ale nie zmienia funkcji białka i pozostaje zmianą niesynonimiczną.

W genie MTHFR najczęściej oznacza się dwa dominujące warianty polimorficzne:

  • c.665C>T (niegdyś c.677C>T), który znaczy, że w 665. pozycji genu znajduje się tymina zamiast cytozyny, co prowadzi do zmiany kodowanego aminokwasu 222 (z alaniny na walinę)
  • c.1298A>C, który znaczy, że w 1298. pozycji genu znajduje się cytozyna zamiast adeniny, co prowadzi do zmiany kodowanego aminokwasu 1298 (z glutationu na alaninę).3

Wymienione warianty polimorficzne szczególnie często występują w populacji kaukaskiej, czyli również w Polsce (nawet u 50–70% populacji ogólnej!), rzadziej u osób rasy żółtej, a najrzadziej u osób rasy czarnej (do 22% populacji ogólnej).4,5 Każdy gen jest reprezentowany przez jego dwa allele, dlatego możliwe są następujące kombinacje:

  • polimorfizm nie występuje u danej osoby
  • polimorfizm występuje w układzie heterozygotycznym (tylko w jednym allelu)
  • polimorfizm występuje w układzie homozygotycznym (w obu allelach [8,5% populacji])
  • polimorfizm występuje w postaci złożonych heterozygot (jeden z ww. polimorfizmów obecny w jednym allelu, a drugi w allelu drugim [2,25% populacji]).1,2,4

Jedynie polimorfizmy MTHFR w układzie homozygotycznym lub złożonej heterozygoty mogą nieznacznie zmniejszać produkcję enzymu lub obniżać jego aktywność enzymatyczną. Polimorfizm c.665C>T w układzie homozygotycznym może nieco zwiększać stężenie homocysteiny, obniżając aktywność białka MTHFR. Polimorfizm c.1298A> C nie wpływa na stężenie homosysteiny zarówno w układzie homo-, jak i heterozygotycznym.6

Poza wymienionymi powyżej polimorfizmami w genie MTHFR mogą wystąpić patogenne warianty (mutacje) prowadzące do poważnego niedoboru enzymu MTHFR (gdy aktywność rezydualna wynosi <20% średniej wartości). Biochemicznie stwierdza się hiperhomocystynemię, homocystynurię, duże stężenie osoczowej cystationiny oraz małe stężenie metioniny. Obraz kliniczny jest mocno zróżnicowany, począwszy od wczesnego początku z ostrymi stanami neurologicznymi, aż po postacie o późnym początku z objawami psychiatrycznymi i zaburzeniami chodu w drugiej dekadzie życia lub w późniejszym okresie życia.2 W bazie Online Mendelian Inheritance in Man (OMIM) opisano chorobę związaną z deficytem reduktazy metylenotetrahydrofolianu o złożonym i szerokim fenotypie, z przewagą ciężkich, postępujących objawów neurologicznych i wczesną śmiercią. Przyczyną są patogenne mutacje w genie MTHFR prowadzące do skrócenia białka i utraty jego funkcji (cyt. OMIM 236 250).

Takie poważne patogenne mutacje są jednak zupełnie czymś innym niż wspomniane polimorfizmy genetyczne i występują bardzo rzadko (na świecie opisano kilkaset takich przypadków).7 Należy również podkreślić, że w ramach wspomnianych badań komercyjnych genu MTHFR wykonywanych samodzielnie przez pacjentów nie można oznaczyć tych mutacji.

Czy istnieją wytyczne dotyczące nosicieli polimorfizmu w genie MTHFR w dziedzinach innych niż szczepienia ochronne?

Zarówno w Polsce, jak i na świecie wiele prywatnych laboratoriów reklamuje badanie polimorfizmu w genie MTHFR jako użyteczne w diagnostyce, profilaktyce i leczeniu różnych stanów klinicznych, wymieniając przy tym długie listy objawów, które powinny skłonić pacjenta do jego wykonania. Firmy te badają jedynie dwa najczęstsze, wspomniane wcześniej polimorfizmy. Okazuje się jednak, że żadne wytyczne nie przewidują oznaczania polimorfizmów w genie MTHFR w celach diagnostycznych lub prognostycznych. W Stanach Zjednoczonych liczne towarzystwa naukowe, m.in. The American Congress of Obstetricians and Gynecologists, The American College of Medical Genetics, The American Heart Association, The College of American Pathologists, nie zalecają, a wręcz są przeciwne badaniu polimorfizmu MTHFR.3 Swoje stanowisko uzasadniają tym, że polimorfizm jest związany z bardzo małym ryzykiem wystąpienia stanów chorobowych, a jego potencjalna obecność nie wpływa na metody profilaktyki i leczenia chorób występujących u danego pacjenta. Głos w tej sprawie zabrali również polscy naukowcy w dokumencie pt. „Stanowisko ekspertów Polskiego Towarzystwa Genetyki Człowieka i Polskiego Towarzystwa Ginekologów i Położników w sprawie zlecania i interpretacji wyników badań pod kątem wariantów genetycznych w genie MTHFR”, którego wnioski pokrywają się z wnioskami towarzystw amerykańskich.8

Czy rutynowe wykonywanie badań w kierunku obecności polimorfizmów MTHFR jest uzasadnionie?

Na podstawie przeglądu dostępnego piśmiennictwa naukowego, badań i zaleceń towarzystw naukowych odpowiedź na pytanie brzmi: NIE. Pamiętajmy o tym, że – zlecając badanie – powinniśmy wiedzieć, co potem zrobić z otrzymanym wynikiem. Rutynowe wykonywanie badań w kierunku polimorfizmów MTHFR nie znajduje żadnego uzasadnienia, ponieważ u pacjentów z potwierdzonym polimorfizmem nie stosuje się żadnej swoistej profilaktyki (dotyczy to również modyfikowania programu szczepień ochronnych), a wynik badania nie wpływa na dalsze postępowanie diagnostyczne i terapeutyczne (jeżeli jest taka potrzeba).

Bardzo klarownie zagadnienie to ujęli polscy eksperci we wspomnianym stanowisku,8 którzy jednoznacznie stwierdzili, że badanie wariantów polimorficznych genu MTHFR jest nieuzasadnione:

  • w diagnostyce przyczyn nawracających poronień
  • w ocenie ryzyka wystąpienia u potomstwa wad ośrodkowego układu nerwowego
  • w określaniu optymalnej dawki i rodzaju kwasu foliowego u kobiet planujących ciążę
  • w diagnostyce dziedzicznych trombofilii
  • w ocenie predyspozycji do chorób nowotworowych.

Jednocześnie w wytycznych nie wymieniono żadnych innych sytuacji klinicznych, w których oznaczenie polimorfizmu MTHFR byłoby korzystne.

Gen MTHFR a szczepienia – dostępne dane naukowe

Jak dotąd w wiarygodnych, recenzowanych czasopismach opublikowano tylko 1 (sic!) badanie, w którym oceniono polimorfizm genu MTHFR w aspekcie bezpieczeństwa szczepień ochronnych. Jego autorzy stwierdzili, że NOP częściej występowały u osób z polimorfizmem genu MTHFR niż w populacji nieobciążonej polimorfizmem genu MTHFR. Głębsza analiza artykułu Reif i wsp. (2008) nasuwa jednak wiele wątpliwości co do użyteczności uzyskanych wyników w szacowaniu bezpieczeństwa szczepień ochronnych:9

  • badanie dotyczyło wyłącznie szczepionki przeciwko ospie prawdziwej, której od wielu lat już się nie stosuje, ale w przeszłości była częstą przyczyną NOP
  • badanie dotyczyło wyłącznie dorosłych, a nie dzieci
  • badana grupa była mała – w pierwszym etapie badania pełną oceną objęto 96 osób, przy czym u 16 z nich stwierdzono NOP, natomiast w drugim etapie badania uczestniczyło jedynie 46 osób
  • autorzy nie oceniali nasilenia ani ciężkości NOP; z tekstu publikacji można się domyślać, że prawdopodobnie nie stwierdzono żadnego ciężkiego odczynu
  • jako NOP rozpatrywano na przykład gorączkę >38,3°C w dowolnym momencie aż w ciągu 30 dni po szczepieniu, co stwarza ryzyko, że u niektórych pacjentów objaw ten mógł mieć inne podłoże.

Autorzy publikacji zdawali sobie sprawę z ograniczeń swojego badania, dlatego sformułowali ostrożne wnioski dotyczące potencjalnego związku obserwowanych NOP u osób z polimorfizmami w genie MTHFR i w innych badanych genach. Jasne jest zatem, że wyników tego opracowania nie można ekstrapolować na ogólną populację, a zwłaszcza na dzieci. Niedopuszczalne jest również rozszerzanie wnioskowania na szczepienia inne niż przeciwko ospie prawdziwej. Niemniej jednak wydaje się, że wyniki tego badania stały się pożywką dla nowych hipotez antyszczepionkowych i podwalinami do powstania kolejnego karkołomnego mitu, który zaczął „żyć własnym życiem” na pseudonaukowych stronach internetowych.

Nie ma żadnych wiarygodnych wytycznych, które uwzględniałyby w jakikolwiek sposób przydatność oznaczenia polimorfizmów genu MTHFR w aspekcie bezpieczeństwa szczepień ochronnych.

Podsumowanie

Polimorfizmy genu MTHFR występują na tyle często w populacji kaukaskiej, że ich obecność jest praktycznie normą. Z logicznego punktu widzenia nie wiadomo zatem, dlaczego badania ukierunkowane na identyfikację polimorfizmów genu MTHFR stały się tak popularne. Wydaje się, że – jak w wielu podobnych przypadkach – największe znaczenie mają tu korzyści ekonomiczne, wykorzystujące niewiedzę i lęk pacjentów. W trakcie analizy piśmiennictwa dotyczącego znaczenia klinicznego polimorfizmów genu MTHFR w aspekcie szczepień ochronnych uwagę autorów zwróciła nieproporcjonalnie duża liczba publikacji pseudonaukowych, zamieszczonych na nierecenzowanych stronach internetowych, w porównaniu z niewielką liczbą prac opublikowanych w wiarygodnych źródłach.

Należy jeszcze raz podkreślić, że nie ma żadnych danych naukowych, które uzasadniałyby odraczanie szczepień i indywidualizację kalendarza szczepień u dzieci z polimorfizmem genu MTHFR. Dzieci, u których stwierdzono taki polimorfizm, mogą i powinny być szczepione zgodnie z aktualnym programem szczepień ochronnych, również z uwzględnieniem szczepień zalecanych dla wieku.

Limfocyty B

Limfocyty B i T stanowią dwa główne rodzaje limfocytów. Komórki B działają głównie przez wydzielanie do płynów organizmu substancji zwanych przeciwciałami. Przeciwciała wyłapują krążące we krwi antygeny. Jednak nie posiadają one zdolności do przenikania do komórek. Zadanie atakowania komórek docelowych – albo komórek zakażonych przez wirusy – albo komórek zaatakowanych przez raka pozostaje komórkom T lub innym komórkom odporności (opisanymi poniżej).

Każda komórka B jest zaprogramowana na produkcję jednego specyficznego przeciwciała. Na przykład jedna komórka B produkuje przeciwciało, które blokuje wirus wywołujący przeziębienie, podczas gdy inna produkuje przeciwciało które atakuje bakterię wywołującą zapalenie płuc.

Jeśli komórka B napotka spustowy antygen, to uruchamia wzrost wielu dużych komórek znanych jako komórki plazmatyczne. Każda komórka plazmatyczna stanowi wyspecjalizowaną fabrykę przeciwciał. Każda komórka plazmatyczna jest potomkiem komórki B i wytwarza miliony identycznych przeciwciał uwalnianych do krwi. Przeciwciało pasuje do antygenu tak jak klucz do zamku. Niektóre pasują bardzo dokładnie inne bardziej jak wytrych. Ale gdziekolwiek przeciwciało i antygen się połączą przeciwciało zaznacza antygen że jest do zniszczenia. Przeciwciała należą do rodziny dużych cząsteczek znanych jako immunoglobuliny. Różne rodzaje przeciwciał pełnią różne funkcje w strategii obrony immunologicznej.

  •      IgA (tzw. immunoglobulina błonowa) pełni główną rolę w mechanizmie odpornościowym błon śluzowych (1) układu oddechowego (2) przewodu pokarmowego, (3) układu moczopłciowego.
  •      IgG (immunoglobuliny G) potrafią opłaszczać drobnoustroje, przyspieszając ich wychwytywanie przez inne komórki układu odporności.
  •      IgM jest bardzo skuteczne w zabijaniu bakterii.
  •      IgA koncentruje się w wydzielanych płynach – łzach, ślinie wydzielinie układu oddechowego, przewodu pokarmowego, dróg rodnych dozorując wejścia do organizmu.
  •      IgE , jej pierwotna funkcja to prawdopodobnie ochrona przed zakażeniem parazytami, a jest odpowiedzialna za objawy alergii.
  •      IgD pozostaje przyłączona do komórek B i pełni kluczową rolę w inicjacji wczesnej odpowiedzi komórek B.

Komórki T (limfocyty T)

W odróżnieniu do komórek B, komórki T nie rozpoznają swobodnie krążących antygenów. Raczej ich powierzchnia posiada wyspecjalizowane receptory (tzw. antibody-like receptors), które rozpoznają fragmenty antygenów na powierzchni zakażonych lub rakowych komórek. Komórki T biorą udział w obronie immunologicznej na dwa główne sposoby: niektóre kierują i regulują odpowiedzią odpornościową; inne atakują bezpośrednio komórki zakażone lub zmienione nowotworowo.

Limfocyty Th (helper T cells) koordynują reakcje odpornościowe poprzez komunikowanie się z innymi komórkami. Niektóre stymulują znajdujące sie pobliżu komórki B do produkcji przeciwciał, inne wzywają komórki żerne zwane fagocytami, inne wreszcie aktywują inne komórki T.

Limfocyty T cytotoksyczne, nazywane również limfocytami Tc (Cytotoxic T Lymphocytes - CTLs) pełnią różne zadania. Komórki te bezpośrednio atakują inne komórki, które noszą pewne obce lub nieprawidłowe cząsteczki na swej powierzchni. Limfocyty T cytotoksyczne są szczególnie użyteczne w obronie przed wirusami, gdyż wirusy są często schowane przed innymi elementami układu odporności ponieważ wirusy często namnażają się wewnątrz zakażonych komórek. Komórki te potrafią wykryć nawet niewielkie fragmenty wirusa sterczące poprzez błonę komórkową zakażonej wirusami komórki i przypuścić na nią atak aby ją zniszczyć.

W większości przypadków komórki T mogą rozpoznać antygen tylko jeśli jest on niesiony na powierzchni komórek, przez własne cząsteczki MHC (major histocompatibility complex = główny kompleks zgodności tkankowej). Cząsteczki MCH to białka uznawane przez komórki T gdy rozróżniają własny – obcy. Własne cząsteczki MHC tworzą rozpoznawalne rusztowanie służce do prezentowania komórkom T obcych antygenów. 

Wprawdzie cząsteczki MHC są potrzebne limfocytom Tc by zaatakować obcych najeźdźców, to stwarzają one problemy w przypadku przeszczepu narządów. Każda komórka organizmu posiada na swej powierzchni białka MHC, zaś każdy człowiek ma swój odrębny zestaw tych białek. Jeśli limfocyt Tc rozpozna cząsteczki "obcego" MHC na powierzchni jakiejś komórki, a tak się dzieje przy przeszczepach, przystąpi do jej niszczenia. Dlatego trzeba dobierać dawców narządów posiadających najbardziej podobny do zestawu biorcy zestaw cząsteczek MH(głównego kompleksu zgodności tkankowej). Inaczej limfocyty Tc prawdopodobnie przypuszczą atak na przeszczepiony narząd i dojedzie do jego odrzucenia.

Komórki NK czyli komórki naturalni zabójcy (NK cells = Natural killer cells) są innym rodzajem białych krwinek klasy limfocytów. Tak jak limfocyty T cytotoksyczne (LTc), komórki NK są uzbrojone w granule wypełnione silnymi substancjami chemicznymi. Jednak podczas gdy zabójcze limfocyty T cytotoksyczne poszukują fragmentów antygenów przyłączonych do cząsteczek "swojego" MHC, komórki NK rozpoznają komórki, które nie posiadają cząsteczek "swojego" MHC. W związku z tym, komórki NK mają zdolność do atakowania różnych rodzajów obcych komórek.

Oba rodzaje zabójczych komórek zabijają poprzez kontakt. Zabójcy przyłączają się do celu, kierują na niego swe uzbrojenie i wywołują śmiertelną eksplozję substancji chemicznych.

Fagocyty i ich krewni

Fagocyty są dużymi białymi komórkami, które potrafią pożreć i strawić mikroby i inne obce cząsteczki. Monocyty są fagocytami, które krążą we krwi. Gdy monocyty przejdą do tkanek przekształcają się w makrofagi.

Wyspecjalizowane rodzaje makrofagów stwierdza się w wielu narządach: płucach,  nerkach, mózgu i wątrobie. Makrofagi pełnią wiele funkcji. Jak czyściciele, uwalniają organizm ze zużytych komórek i innych szczątek (śmieci). Demonstrują one kawałki obcych antygenów, tak aby zwrócić uwagę właściwych (odpowiednich) limfocytów. Kierują na zewnątrz niesamowitą mnogość potężnych sygnałów chemicznych, znanych jako monokiny, które są istotne dla odpowiedzi immunologicznej.

Inny rodzaj komórek układu odporności to granulocyty. Zawierają one granule wypełnione potężnymi substancjami chemicznymi, które pozwalają granulocytom na niszczenie mikroorganizmów. Niektóre z tych substancji, takie jak histamina biorą również udział w pro­cesach zapalenia i alergii.

Jednym z granulocytów, jest neutrofil, jest również fagocytem; używa on zgromadzonych  wcześniej substancji chemicznych do rozłożenia i strawienia mikrobów. Eozynofile i bazofile to inne granulocyty, które uwalniają ze swych granuli substancje chemiczne rozpylając je na  znajdujące się w pobliżu mikroby i szkodliwe komórki.

Komórki tuczne są bliźniaczymi komórkami bazofilów, poza tym, że nie są one krwinkami. Znajduje się je w tkankach: płucach, skórze, języku, błonie śluzowej wyścielającej jamę nosową i przewód pokarmowy, gdzie odpowiadają za objawy alergii.

Pokrewną strukturą są płytki krwi. Są to fragmenty komórek, które również zawierają gra­nu­le. Do funkcji płytek związanej z agregacją krwinek, krzepnięciem i leczeniem zranień należy również aktywacja odporności.

Cytokiny

Składowe układu odporności komunikują sie pomiędzy sobą poprzez wymianę chemicznych posłańców zwanych cytokinami. Te białka są wydzielane przez komórki i oddziałują na inne komórki, aby koordynować właściwą odpowiedź immunologiczną. Cytokiny obejmują zróżnicowany asortyment interleukin, interferonów i czynników wzrostu. Niektóre cytokiny są rodzajem chemicznych włączników, które włączają lub wyłączają pewne rodzaje komórek odporności.

Jedna z cytokin, interleukina 2 (IL-2), uruchamia produkcję komórek T przez układ odporności. Stymulujące odporność właściwości IL-2 czynią z niej tradycyjnie nadzieję w leczeniu szeregu schorzeń. Prowadzone są badania kliniczne testujące ich korzyści w innych chorobach takich jak rak, zapalenie wątroby typu C, zakażenie HIV i AIDS. Również inne cytokiny są badane dla ich potencjalnych korzyści terapeutycznych i zastosowań klinicznych.

Inne cytokiny przywabiają chemicznie poszczególne rodzaje komórek. Te tak zwane chemokiny są uwalniane przez komórki w miejscu uszkodzenia (urazu) lub zakażenia oraz wzywają inne komórki układu odporności do tego miejsca, aby pomogły naprawić uszkodzenie i zwalczyć intruzów. Chemokiny często odgrywają kluczową rolę w zapaleniu i są obiecującym celem dla nowych leków regulujących odpowiedź immunologiczną.

Układ dopełniacza

Układ dopełniacza zawiera ok. 25 białek, które działają wspólnie aby “dopełniać” akcję przeciwciał w niszczeniu bakterii. Dopełniacz wspomaga również uwalnianie organizmu z kompleksów antygen-przeciwciało. Białka dopełniacza, które powodują rozszerzenie naczyń krwionośnych i wywołują ich przepuszczalność, biorą udział w powstaniu zaczerwienienia, obrzęku, bólu, we wzroście temperatury i utracie funkcji co charakteryzuje odpowiedź zapalną.

Białka dopełniacza krążą we kwi w postaci nieaktywnej. Gdy pierwsze z białek dopełniacza zostanie aktywowane – typowo przez przeciwciało, które zarygluje antygenem, uruchamia się efekt domino. Każdy składnik (bierze) posiada swój udział w precyzyjnym łańcuchu kroków   zna­nych jako kaskada dopełniacza. Produktem końcowym jest cylinder, który wbija się w ścia­­nę komórki tworząc w niej dziurę (otwór). Płyny i cząsteczki wpływają i wypływają przez nią do komórki, która puchnie (brzęknie) i się rozpęka. Inne składniki układu dopełniacza czynią bakterie podatnymi na fagocytozę i/lub zwabiają inne komórki do tego rejonu.

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

29.05.2019

Źródło: Medycyna Praktyczna Autor: Małgorzata Solecka

W ubiegłym roku zanotowano ponad 40 tysięcy odmów szczepień. Eksperci, komentując te dane, wyrażali ostrożny optymizm, bo w ostatnim kwartale roku niekorzystny trend wyraźnie wyhamował. Optymizm był jednak przedwczesny: w pierwszych trzech miesiącach 2019 roku zanotowano już ponad 42 tysiące odmów szczepień.
24.04.2019

Źródło: Medycyna Praktyczna Autor:Mateusz Biela

Jednym z najbardziej „popularnych” genów ostatnich miesięcy stał się gen MTHFR. Za sprawą nieprawdziwych informacji, szerzących się w internecie w zupełnie niekontrolowany sposób, wprowadzono w błąd bardzo wielu ludzi. Zwłaszcza młode matki, spędzające całe dnie i noce na czytaniu absolutnie wszystkiego, co mogłoby w jakikolwiek sposób dotyczyć ich pociech, padły ofiarą zamieszania. Postanowiliśmy zatem porządnie się rozprawić z mitami, jakie narosły wokół kontrowersyjnego genu MTHFR.

06.11.2016

Źródło: Laboratoria.net, Autor: Magdalena Maniecka

Rozwój inżynierii genetycznej zaowocował powstaniem nowego nurtu w lecznictwie, polegającego na wprowadzaniu do organizmu obcych kwasów nukleinowych w celach terapeutycznych. Aktualnie terapia genowa nastawiona jest na dwa tematy: rekompensacja defektów genetycznych poprzez wprowadzenie właściwych sekwencji DNA oraz wyciszanie ekspresji tych genów, których produkty białkowe są szkodliwe dla organizmu.