Budowa układu odporności i działanie jego elementów

26.09.2016

Nanocząsteczki żelaza aktywują obronę przed rakiem


Źródło: Stanford Medicine, News Center

Streszczenie: Nanocząsteczki żelaza potrafią uaktywniać komórki układu odporności - tzw. tumor associated macrophages, tak aby  zaatakowały i niszczyły komórki raka, wg. tego badania przeprowadzonego na myszach. Nanocząsteczki, które są dostępne pod nazwą ferumoxytol jako suplement żelaza w iniekcji. Preparat ten został  zatwierdzony przez Food and Drug Administration do leczenia niedokrwistości z niedoboru żelaza.

Kategoria: General
Napisał: admin

Iron nanoparticles make immune cells attack cancer

Stanford researchers accidentally discovered that iron nanoparticles invented for anemia treatment have another use: triggering the immune system’s ability to destroy tumor cells.

Sep 26 2016

Iron nanoparticles can activate the immune system to attack cancer cells, according to a study led by researchers at the Stanford University School of Medicine.

The nanoparticles, which are commercially available as the injectable iron supplement ferumoxytol, are approved by the Food and Drug Administration to treat iron deficiency anemia.

The mouse study found that ferumoxytol prompts immune cells called tumor-associated macrophages to destroy cancer cells, suggesting that the nanoparticles could complement existing cancer treatments. The discovery, described in a paper published online Sept. 26 in Nature Nanotechnology, was made by accident while testing whether the nanoparticles could serve as Trojan horses by sneaking chemotherapy into tumors in mice.

"It was really surprising to us that the nanoparticles activated macrophages so that they started to attack cancer cells in mice,” said Heike Daldrup-Link, MD, who is the study’s senior author and an associate professor of radiology at the School of Medicine. “We think this concept should hold in human patients, too."

Daldrup-Link’s team conducted an experiment that used three groups of mice: an experimental group that got nanoparticles loaded with chemo, a control group that got nanoparticles without chemo and a control group that got neither. The researchers made the unexpected observation that the growth of the tumors in control animals that got nanoparticles only was suppressed compared with the other controls.

Getting macrophages back on track

The researchers conducted a series of follow-up tests to characterize what was happening. Experimenting with cells in a dish, they showed that immune cells called tumor-associated macrophages were required for the nanoparticles’ anti-cancer activity; in cell cultures without macrophages, the iron nanoparticles had no effect against cancer cells.

Before this study was done, it was already known that in healthy people, tumor-associated macrophages detect and eat individual tumor cells. However, large tumors can hijack the tumor-associated macrophages, causing them to stop attacking and instead begin secreting factors that promote the cancer’s growth.

The study showed that the iron nanoparticles switch the macrophages back to their cancer-attacking state, as evidenced by tracking the products of the macrophages’ metabolism and examining their patterns of gene expression.

Furthermore, in a mouse model of breast cancer, the researchers demonstrated that the ferumoxytol inhibited tumor growth when given in doses, adjusted for body weight, similar to those approved by the FDA for anemia treatment. Prior studies had shown that the nanoparticles are metabolized over a period of about six weeks, and the new study showed that the anti-cancer effect of a single dose of nanoparticles declined over about three weeks.

The scientists also tested whether the nanoparticles could stop cancer from spreading. In a mouse model of small-cell lung cancer, the nanoparticles reduced tumor formation in the liver, a common site of metastasis in both mice and humans. In a separate model of liver metastasis, pretreatment with nanoparticles before tumor cells were introduced greatly reduced the volume of liver tumors.

Więcej czytaj --> Stanford Medicine, News Center

Limfocyty B

Limfocyty B i T stanowią dwa główne rodzaje limfocytów. Komórki B działają głównie przez wydzielanie do płynów organizmu substancji zwanych przeciwciałami. Przeciwciała wyłapują krążące we krwi antygeny. Jednak nie posiadają one zdolności do przenikania do komórek. Zadanie atakowania komórek docelowych – albo komórek zakażonych przez wirusy – albo komórek zaatakowanych przez raka pozostaje komórkom T lub innym komórkom odporności (opisanymi poniżej).

Każda komórka B jest zaprogramowana na produkcję jednego specyficznego przeciwciała. Na przykład jedna komórka B produkuje przeciwciało, które blokuje wirus wywołujący przeziębienie, podczas gdy inna produkuje przeciwciało które atakuje bakterię wywołującą zapalenie płuc.

Jeśli komórka B napotka spustowy antygen, to uruchamia wzrost wielu dużych komórek znanych jako komórki plazmatyczne. Każda komórka plazmatyczna stanowi wyspecjalizowaną fabrykę przeciwciał. Każda komórka plazmatyczna jest potomkiem komórki B i wytwarza miliony identycznych przeciwciał uwalnianych do krwi. Przeciwciało pasuje do antygenu tak jak klucz do zamku. Niektóre pasują bardzo dokładnie inne bardziej jak wytrych. Ale gdziekolwiek przeciwciało i antygen się połączą przeciwciało zaznacza antygen że jest do zniszczenia. Przeciwciała należą do rodziny dużych cząsteczek znanych jako immunoglobuliny. Różne rodzaje przeciwciał pełnią różne funkcje w strategii obrony immunologicznej.

  •      IgA (tzw. immunoglobulina błonowa) pełni główną rolę w mechanizmie odpornościowym błon śluzowych (1) układu oddechowego (2) przewodu pokarmowego, (3) układu moczopłciowego.
  •      IgG (immunoglobuliny G) potrafią opłaszczać drobnoustroje, przyspieszając ich wychwytywanie przez inne komórki układu odporności.
  •      IgM jest bardzo skuteczne w zabijaniu bakterii.
  •      IgA koncentruje się w wydzielanych płynach – łzach, ślinie wydzielinie układu oddechowego, przewodu pokarmowego, dróg rodnych dozorując wejścia do organizmu.
  •      IgE , jej pierwotna funkcja to prawdopodobnie ochrona przed zakażeniem parazytami, a jest odpowiedzialna za objawy alergii.
  •      IgD pozostaje przyłączona do komórek B i pełni kluczową rolę w inicjacji wczesnej odpowiedzi komórek B.

Komórki T (limfocyty T)

W odróżnieniu do komórek B, komórki T nie rozpoznają swobodnie krążących antygenów. Raczej ich powierzchnia posiada wyspecjalizowane receptory (tzw. antibody-like receptors), które rozpoznają fragmenty antygenów na powierzchni zakażonych lub rakowych komórek. Komórki T biorą udział w obronie immunologicznej na dwa główne sposoby: niektóre kierują i regulują odpowiedzią odpornościową; inne atakują bezpośrednio komórki zakażone lub zmienione nowotworowo.

Limfocyty Th (helper T cells) koordynują reakcje odpornościowe poprzez komunikowanie się z innymi komórkami. Niektóre stymulują znajdujące sie pobliżu komórki B do produkcji przeciwciał, inne wzywają komórki żerne zwane fagocytami, inne wreszcie aktywują inne komórki T.

Limfocyty T cytotoksyczne, nazywane również limfocytami Tc (Cytotoxic T Lymphocytes - CTLs) pełnią różne zadania. Komórki te bezpośrednio atakują inne komórki, które noszą pewne obce lub nieprawidłowe cząsteczki na swej powierzchni. Limfocyty T cytotoksyczne są szczególnie użyteczne w obronie przed wirusami, gdyż wirusy są często schowane przed innymi elementami układu odporności ponieważ wirusy często namnażają się wewnątrz zakażonych komórek. Komórki te potrafią wykryć nawet niewielkie fragmenty wirusa sterczące poprzez błonę komórkową zakażonej wirusami komórki i przypuścić na nią atak aby ją zniszczyć.

W większości przypadków komórki T mogą rozpoznać antygen tylko jeśli jest on niesiony na powierzchni komórek, przez własne cząsteczki MHC (major histocompatibility complex = główny kompleks zgodności tkankowej). Cząsteczki MCH to białka uznawane przez komórki T gdy rozróżniają własny – obcy. Własne cząsteczki MHC tworzą rozpoznawalne rusztowanie służce do prezentowania komórkom T obcych antygenów. 

Wprawdzie cząsteczki MHC są potrzebne limfocytom Tc by zaatakować obcych najeźdźców, to stwarzają one problemy w przypadku przeszczepu narządów. Każda komórka organizmu posiada na swej powierzchni białka MHC, zaś każdy człowiek ma swój odrębny zestaw tych białek. Jeśli limfocyt Tc rozpozna cząsteczki "obcego" MHC na powierzchni jakiejś komórki, a tak się dzieje przy przeszczepach, przystąpi do jej niszczenia. Dlatego trzeba dobierać dawców narządów posiadających najbardziej podobny do zestawu biorcy zestaw cząsteczek MH(głównego kompleksu zgodności tkankowej). Inaczej limfocyty Tc prawdopodobnie przypuszczą atak na przeszczepiony narząd i dojedzie do jego odrzucenia.

Komórki NK czyli komórki naturalni zabójcy (NK cells = Natural killer cells) są innym rodzajem białych krwinek klasy limfocytów. Tak jak limfocyty T cytotoksyczne (LTc), komórki NK są uzbrojone w granule wypełnione silnymi substancjami chemicznymi. Jednak podczas gdy zabójcze limfocyty T cytotoksyczne poszukują fragmentów antygenów przyłączonych do cząsteczek "swojego" MHC, komórki NK rozpoznają komórki, które nie posiadają cząsteczek "swojego" MHC. W związku z tym, komórki NK mają zdolność do atakowania różnych rodzajów obcych komórek.

Oba rodzaje zabójczych komórek zabijają poprzez kontakt. Zabójcy przyłączają się do celu, kierują na niego swe uzbrojenie i wywołują śmiertelną eksplozję substancji chemicznych.

Fagocyty i ich krewni

Fagocyty są dużymi białymi komórkami, które potrafią pożreć i strawić mikroby i inne obce cząsteczki. Monocyty są fagocytami, które krążą we krwi. Gdy monocyty przejdą do tkanek przekształcają się w makrofagi.

Wyspecjalizowane rodzaje makrofagów stwierdza się w wielu narządach: płucach,  nerkach, mózgu i wątrobie. Makrofagi pełnią wiele funkcji. Jak czyściciele, uwalniają organizm ze zużytych komórek i innych szczątek (śmieci). Demonstrują one kawałki obcych antygenów, tak aby zwrócić uwagę właściwych (odpowiednich) limfocytów. Kierują na zewnątrz niesamowitą mnogość potężnych sygnałów chemicznych, znanych jako monokiny, które są istotne dla odpowiedzi immunologicznej.

Inny rodzaj komórek układu odporności to granulocyty. Zawierają one granule wypełnione potężnymi substancjami chemicznymi, które pozwalają granulocytom na niszczenie mikroorganizmów. Niektóre z tych substancji, takie jak histamina biorą również udział w pro­cesach zapalenia i alergii.

Jednym z granulocytów, jest neutrofil, jest również fagocytem; używa on zgromadzonych  wcześniej substancji chemicznych do rozłożenia i strawienia mikrobów. Eozynofile i bazofile to inne granulocyty, które uwalniają ze swych granuli substancje chemiczne rozpylając je na  znajdujące się w pobliżu mikroby i szkodliwe komórki.

Komórki tuczne są bliźniaczymi komórkami bazofilów, poza tym, że nie są one krwinkami. Znajduje się je w tkankach: płucach, skórze, języku, błonie śluzowej wyścielającej jamę nosową i przewód pokarmowy, gdzie odpowiadają za objawy alergii.

Pokrewną strukturą są płytki krwi. Są to fragmenty komórek, które również zawierają gra­nu­le. Do funkcji płytek związanej z agregacją krwinek, krzepnięciem i leczeniem zranień należy również aktywacja odporności.

Cytokiny

Składowe układu odporności komunikują sie pomiędzy sobą poprzez wymianę chemicznych posłańców zwanych cytokinami. Te białka są wydzielane przez komórki i oddziałują na inne komórki, aby koordynować właściwą odpowiedź immunologiczną. Cytokiny obejmują zróżnicowany asortyment interleukin, interferonów i czynników wzrostu. Niektóre cytokiny są rodzajem chemicznych włączników, które włączają lub wyłączają pewne rodzaje komórek odporności.

Jedna z cytokin, interleukina 2 (IL-2), uruchamia produkcję komórek T przez układ odporności. Stymulujące odporność właściwości IL-2 czynią z niej tradycyjnie nadzieję w leczeniu szeregu schorzeń. Prowadzone są badania kliniczne testujące ich korzyści w innych chorobach takich jak rak, zapalenie wątroby typu C, zakażenie HIV i AIDS. Również inne cytokiny są badane dla ich potencjalnych korzyści terapeutycznych i zastosowań klinicznych.

Inne cytokiny przywabiają chemicznie poszczególne rodzaje komórek. Te tak zwane chemokiny są uwalniane przez komórki w miejscu uszkodzenia (urazu) lub zakażenia oraz wzywają inne komórki układu odporności do tego miejsca, aby pomogły naprawić uszkodzenie i zwalczyć intruzów. Chemokiny często odgrywają kluczową rolę w zapaleniu i są obiecującym celem dla nowych leków regulujących odpowiedź immunologiczną.

Układ dopełniacza

Układ dopełniacza zawiera ok. 25 białek, które działają wspólnie aby “dopełniać” akcję przeciwciał w niszczeniu bakterii. Dopełniacz wspomaga również uwalnianie organizmu z kompleksów antygen-przeciwciało. Białka dopełniacza, które powodują rozszerzenie naczyń krwionośnych i wywołują ich przepuszczalność, biorą udział w powstaniu zaczerwienienia, obrzęku, bólu, we wzroście temperatury i utracie funkcji co charakteryzuje odpowiedź zapalną.

Białka dopełniacza krążą we kwi w postaci nieaktywnej. Gdy pierwsze z białek dopełniacza zostanie aktywowane – typowo przez przeciwciało, które zarygluje antygenem, uruchamia się efekt domino. Każdy składnik (bierze) posiada swój udział w precyzyjnym łańcuchu kroków   zna­nych jako kaskada dopełniacza. Produktem końcowym jest cylinder, który wbija się w ścia­­nę komórki tworząc w niej dziurę (otwór). Płyny i cząsteczki wpływają i wypływają przez nią do komórki, która puchnie (brzęknie) i się rozpęka. Inne składniki układu dopełniacza czynią bakterie podatnymi na fagocytozę i/lub zwabiają inne komórki do tego rejonu.

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

14.06.2017

Źródło: Medycyna Praktyczna, Autor: Dr n. med. Ewa Duszczyk, Polskie Towarzystwo Wakcynologii

26-letnia kobieta wybiera się na półroczną podróż w celach turystycznych do Azji Południowej. Jakie szczepienia zaproponować w celu zmniejszenia ryzyka zachorowania podczas podróży? Pacjentka poddana była szczepieniom w ramach obowiązkowych szczepień ochronnych.
06.11.2016

Źródło: Laboratoria.net, Autor: Magdalena Maniecka

Rozwój inżynierii genetycznej zaowocował powstaniem nowego nurtu w lecznictwie, polegającego na wprowadzaniu do organizmu obcych kwasów nukleinowych w celach terapeutycznych. Aktualnie terapia genowa nastawiona jest na dwa tematy: rekompensacja defektów genetycznych poprzez wprowadzenie właściwych sekwencji DNA oraz wyciszanie ekspresji tych genów, których produkty białkowe są szkodliwe dla organizmu.

26.09.2016

Źródło: Stanford Medicine, News Center

Streszczenie: Nanocząsteczki żelaza potrafią uaktywniać komórki układu odporności - tzw. tumor associated macrophages, tak aby  zaatakowały i niszczyły komórki raka, wg. tego badania przeprowadzonego na myszach. Nanocząsteczki, które są dostępne pod nazwą ferumoxytol jako suplement żelaza w iniekcji. Preparat ten został  zatwierdzony przez Food and Drug Administration do leczenia niedokrwistości z niedoboru żelaza.