Układ odporności

26.09.2016

Nanocząsteczki żelaza aktywują obronę przed rakiem


Źródło: Stanford Medicine, News Center

Streszczenie: Nanocząsteczki żelaza potrafią uaktywniać komórki układu odporności - tzw. tumor associated macrophages, tak aby  zaatakowały i niszczyły komórki raka, wg. tego badania przeprowadzonego na myszach. Nanocząsteczki, które są dostępne pod nazwą ferumoxytol jako suplement żelaza w iniekcji. Preparat ten został  zatwierdzony przez Food and Drug Administration do leczenia niedokrwistości z niedoboru żelaza.

Kategoria: General
Napisał: admin

Iron nanoparticles make immune cells attack cancer

Stanford researchers accidentally discovered that iron nanoparticles invented for anemia treatment have another use: triggering the immune system’s ability to destroy tumor cells.

Sep 26 2016

Iron nanoparticles can activate the immune system to attack cancer cells, according to a study led by researchers at the Stanford University School of Medicine.

The nanoparticles, which are commercially available as the injectable iron supplement ferumoxytol, are approved by the Food and Drug Administration to treat iron deficiency anemia.

The mouse study found that ferumoxytol prompts immune cells called tumor-associated macrophages to destroy cancer cells, suggesting that the nanoparticles could complement existing cancer treatments. The discovery, described in a paper published online Sept. 26 in Nature Nanotechnology, was made by accident while testing whether the nanoparticles could serve as Trojan horses by sneaking chemotherapy into tumors in mice.

"It was really surprising to us that the nanoparticles activated macrophages so that they started to attack cancer cells in mice,” said Heike Daldrup-Link, MD, who is the study’s senior author and an associate professor of radiology at the School of Medicine. “We think this concept should hold in human patients, too."

Daldrup-Link’s team conducted an experiment that used three groups of mice: an experimental group that got nanoparticles loaded with chemo, a control group that got nanoparticles without chemo and a control group that got neither. The researchers made the unexpected observation that the growth of the tumors in control animals that got nanoparticles only was suppressed compared with the other controls.

Getting macrophages back on track

The researchers conducted a series of follow-up tests to characterize what was happening. Experimenting with cells in a dish, they showed that immune cells called tumor-associated macrophages were required for the nanoparticles’ anti-cancer activity; in cell cultures without macrophages, the iron nanoparticles had no effect against cancer cells.

Before this study was done, it was already known that in healthy people, tumor-associated macrophages detect and eat individual tumor cells. However, large tumors can hijack the tumor-associated macrophages, causing them to stop attacking and instead begin secreting factors that promote the cancer’s growth.

The study showed that the iron nanoparticles switch the macrophages back to their cancer-attacking state, as evidenced by tracking the products of the macrophages’ metabolism and examining their patterns of gene expression.

Furthermore, in a mouse model of breast cancer, the researchers demonstrated that the ferumoxytol inhibited tumor growth when given in doses, adjusted for body weight, similar to those approved by the FDA for anemia treatment. Prior studies had shown that the nanoparticles are metabolized over a period of about six weeks, and the new study showed that the anti-cancer effect of a single dose of nanoparticles declined over about three weeks.

The scientists also tested whether the nanoparticles could stop cancer from spreading. In a mouse model of small-cell lung cancer, the nanoparticles reduced tumor formation in the liver, a common site of metastasis in both mice and humans. In a separate model of liver metastasis, pretreatment with nanoparticles before tumor cells were introduced greatly reduced the volume of liver tumors.

Więcej czytaj --> Stanford Medicine, News Center

Prezentacja antygenu

Prezentacja antygenu – termin obejmujący znaczeniem mechanizmy odpornościowe, które polegają na „ukazaniu” antygenu limfocytom T przy udziale cząsteczek MHC. Głównym celem prezentacji antygenów jest rozwinięcie odpowiedzi swoistej na dany antygen. Charakterystyczne jest to, że antygeny nie są przedstawiane w formie pierwotnej (natywnej), lecz w formie przetworzonej.

Ze względu na zróżnicowanie cząsteczek MHC*, prezentacja antygenu może się przejawiać w jednej z trzech postaci:


*MHC - ang. major histocompatibility complex - główny układ zgodności tkankowej. Stanowi go zespół białek odpowiedzialnych za prezentację antygenów limfocytom T.

  • Cząsteczki MHC klasy I, które prezentują antygeny limfocytom Tc (cytotoksycznym), biorą udział w obronie przeciwko patogenom wewnątrzkomórkowym, np. wirusom. Jeżeli taki antygen zostanie rozpoznany jako obcy, komórka prezentująca będzie zabita, jego obecność na cząsteczce MHC klasy I świadczy bowiem o istnieniu patogenu we wnętrzu komórki. Zabijając komórkę, limfocyt Tc zabija zwykle także występującego w niej pasożyta. Można powiedzieć, że w ten sposób jednostka (komórka) jest poświęcana dla dobra ogółu (organizmu).
  • Cząsteczki MHC klasy II, które prezentują antygeny limfocytom Th (pomocniczym), nie wywołują śmierci komórki prezentującej antygen. W tym przypadku taka komórka rozpoczyna wydzielanie cytokin, które pobudzają limfocyt Th. Limfocyty Th są istotnymi komórkami regulującymi odpowiedź odpornościową. Dzięki temu cząsteczki MHC klasy II uczestniczą w pobudzeniu innych komórek, za pośrednictwem limfocytów T pomocniczych.
  • Prezentacja krzyżowa jest mechanizmem umożliwiającym pobudzenie zarówno limfocytów Th, jak i limfocytów Tc, przy czym biorą w niej udział zarówno cząsteczki MHC klasy I, jak i klasy II. Nie jest to jednak prosta kombinacja dwóch poprzednio wymienionych rodzajów prezentacji antygenu. Zachodzi ona w charakterystyczny sposób z udziałem określonych komórek, które prezentują antygeny jednocześnie na MHC obu klas i nie są zabijane przez limfocyty Tc.


2 Makrofagi i komórki dendrytyczne należą do tzw. komórek prezentujących antygen (Antigen Presenting Cells).

 

Limfocyty – komórki T i komórki B

Limfocyty należą do krwinek białych (leukocytów) i pochodzą ze szpiku kostnego, ale migrują do różnych części układu limfatycznego, takich jak węzły chłonne, śledzona czy grasica. Są dwa główne rodzaje limfocytów: komórki T i komórki B. Układ limfatyczny obejmuje również system transportowy – układ naczyń limfatycznych – służący do transportu oraz magazynowania limfocytów. Układ limfatyczny zaopatruje/dostarcza limfocyty naszemu organizmowi i odfiltrowuje tkanki z martwych komórek i mikroorganizmów, które nas zaatakowały, takich jak np. bakterie.

Na powierzchni każdego limfocyta znajdują sie receptory, które umożliwiają im rozpoznawanie obcych substancji. Receptory te są bardzo wyspecjalizowane i pasują tylko do jednego swoistego antygenu. Aby to zrozumieć działanie takich specyficznych receptorów pomyślcie o ręce, która może chwycić tylko jeden rodzaj przedmiotu, na przykład tylko jabłko. Taka ręka byłaby prawdziwym mistrzem w chwytaniu jabłek, ale nie byłaby w stanie chwycić cokolwiek innego. W naszym organizmie taki pojedynczy receptor odpowiadałby ręce, która wychwytuje swoje „jabłka”. Limfocyty przemierzają nasz organizm póki nie natrafią na antygen, który ma właściwy kształt i  rozmiar pasujący do ich specyficznego receptora. Wydaje się, że może fakt, iż receptory każdego limfocyta mogą pasować tylko do jednego szczególnego rodzaju antygenu będzie stanowił ograniczenie, ale organizm radzi sobie z tym dzięki produkcji takiej mnogości różnorodnych rodzajów limfocytów, że układ odporności jest w stanie rozpoznać niemal każdego intruza.

Limfocyty T

Limfocyty (komórki) T tworzą dwie główne i odmienne grupy: limfocyty pomocnicze T (helper cells) i limfocyty T zabójcy (killer cells). Nazwa limfocyty T pochodzi od łacińskiej nazwy grasicy – thymus – gruczołu położonego za mostkiem. Limfocyty T powstają w szpiku kostnym,  następnie migrują do grasicy gdzie dojrzewają.

Limfocyty pomocnicze Th (helper) stanowią główną siłę napędową i regulującą układ odporności. Ich podstawowym zadaniem jest aktywacja limfocytów B oraz limfocytów T zabójców. Jednak limfocyty pomocnicze Th same muszą być wcześniej aktywowane. Dzieje się to wówczas, gdy makrofag lub komórka dendrytyczna, która wcześniej pochłonęła intruza, przemieści się do pobliskiego węzła chłonnego i zaprezentuje informację o załapanym patogenie. Komórka żerna (fagocyt) przedstawia fragment antygenu intruza na swej powierzchni w procesie znanym prezentacją antygenu. Limfocyt pomocniczy Th zostaje aktywowany, gdy jego receptor rozpozna antygen. Raz aktywowany limfocyt pomocniczy Th zaczyna się dzielić i produkować białka, które aktywują limfocyty B i T jak również inne komórki układu odporności.

Limfocyt T zabójca (killer cell) jest wyspecjalizowany w atakowaniu komórek organizmu zakażonych wirusami, a czasem bakteriami. Atakuje również komórki raka. Limfocyt T zabójca posiada receptory do wyszukiwania każdej komórki, która pasuje. Komórka, jeśli jest zakażona, jest szybko zabijana. Zakażone komórki są rozpoznawane dzięki drobnym śladom intruza - antygenowi, który może być wykryty na ich powierzchni.

Limfocyty B

Limfocyt B poszukuje antygenu pasującego do jego receptorów. Jeśli znajdzie taki antygen to przyłączy się do niego i wewnątrz limfocyta B jest uruchamiany sygnał spustowy. Ale żeby zostać w pełni aktywowanym, limfocyt B potrzebuje jeszcze białka produkowanego przez limfocyty pomocnicze Th. Gdy to nastąpi limfocyt B zaczyna się dzielić produkując swoje klony komórkowe i w czasie tego procesu powstają dwa nowe typy komórek: komórki plazmatyczne i limfocyty pamięci B.

Komórka plazmatyczna jest wyspecjalizowana w produkcji  swoistych białek zwanych przeciwciałami, które będą oddziaływać na taki antygen, który pasuje do receptora limfocyta B. Przeciwciała uwalniane przez komórki plazmatyczne potrafią wyszukać „intruzów” i pomóc w ich zniszczeniu. Komórki plazmatyczne produkują przeciwciała w niezwykłym tempie i potrafią uwalniać dziesiątki tysięcy przeciwciał na sekundę. Gdy Y-kształtne przeciwciała napotkają pasujący antygen, przyłączają się do niego. Przyłączone przeciwciała służą jako „smakowita otoczka” dla komórek żernych, takich jak makrofagi. Przeciwciała neutralizują również toksyny i unieszkodliwiają wirusy, zapobiegając zakażaniu przez nie nowych komórek. Każde ramię Y-kształtnego przeciwciała może przyłączyć się do różnego antygenu. Tak więc gdy jedno ramię łączy się z jednym antygenem na jednej komórce, to drugie ramie może przyłączać się do innej komórki. W ten sposób patogeny są zbierane w większe grupy, które łatwiej jest sfagocytować komórkom żernym. Poza tym bakterie i inne patogeny pokryte przeciwciałami są łatwiejszym celem na atak białek układu dopełniacza.

Limfocyty pamięci B (komórki pamięci B) są drugim rodzajem komórek produkowanych przez kategorię limfocytów B. Komórki te mają wydłużony okres życia i dlatego mogą „pamiętać” swoistych intruzów. Również kategoria limfocytów T może produkować komórki pamięci, mają one nawet dłuższy okres życia niż limfocyty B pamięci. Gdy intruz próbuje powtórnie zaatakować organizm, to limfocyty pamięci B oraz T, które już go znają, pomagają aktywować układ odporności znacznie szybciej. Najeźdźcy zostają wprost “wymieceni”, zanim zakażona osoba poczuje jakiekolwiek objawy. Organizm został uodporniony na intruza.

Aktywacja limfocytów pamięci B

 

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

14.06.2017

Źródło: Medycyna Praktyczna, Autor: Dr n. med. Ewa Duszczyk, Polskie Towarzystwo Wakcynologii

26-letnia kobieta wybiera się na półroczną podróż w celach turystycznych do Azji Południowej. Jakie szczepienia zaproponować w celu zmniejszenia ryzyka zachorowania podczas podróży? Pacjentka poddana była szczepieniom w ramach obowiązkowych szczepień ochronnych.
06.11.2016

Źródło: Laboratoria.net, Autor: Magdalena Maniecka

Rozwój inżynierii genetycznej zaowocował powstaniem nowego nurtu w lecznictwie, polegającego na wprowadzaniu do organizmu obcych kwasów nukleinowych w celach terapeutycznych. Aktualnie terapia genowa nastawiona jest na dwa tematy: rekompensacja defektów genetycznych poprzez wprowadzenie właściwych sekwencji DNA oraz wyciszanie ekspresji tych genów, których produkty białkowe są szkodliwe dla organizmu.

26.09.2016

Źródło: Stanford Medicine, News Center

Streszczenie: Nanocząsteczki żelaza potrafią uaktywniać komórki układu odporności - tzw. tumor associated macrophages, tak aby  zaatakowały i niszczyły komórki raka, wg. tego badania przeprowadzonego na myszach. Nanocząsteczki, które są dostępne pod nazwą ferumoxytol jako suplement żelaza w iniekcji. Preparat ten został  zatwierdzony przez Food and Drug Administration do leczenia niedokrwistości z niedoboru żelaza.