Układ odporności

27.12.2021

Wpływ uwarunkowań genetycznych na przebieg COVID-19


Źródło:Termedia Autor: Monika Stelmach

Nasze badania pozwoliły stworzyć matematyczny model, dzięki któremu możemy szacować ryzyko ciężkiego przebiegu COVID-19. Myślę, że niebawem to narzędzie może być wykorzystywane w praktyce klinicznej – mówi dr Karolina Chwiałkowska z Centrum Bioinformatyki i Analizy Danych Uniwersytetu Medycznego w Białymstoku.

Kategoria: General
Napisał: admin

W najnowszym numerze „Nature” opublikowano wyniki międzynarodowych badań z udziałem polskich specjalistów, które wykazują, jakie czynniki genetyczne mogą wpływać na podatność na zakażenie oraz ciężki przebieg COVID-19. Do międzynarodowego konsorcjum COVID-19 Host Genetics Initiative (HGI) należy prawie 200 ośrodków naukowych z całego świata. Publikacja w „Nature” opierała się na wynikach analiz z 50 ośrodków. Nad badaniami pracowało około 3 tys. naukowców. Polskim uczestnikiem projektu HGI jest Uniwersytet Medyczny w Białymstoku.

– W genomice istotnym elementem jest wielkość próby. Stąd pomysł, żeby poszczególne ośrodki prowadziły własne badania, a wspólnie wykonały metaanalizę. Badania opublikowane w „Nature” miały olbrzymi rozmiar, co przyniosło efekty – wyjaśnia dr Karolina Chwiałkowska z Centrum Bioinformatyki i Analizy Danych białostockiej uczelni.

Naukowcy zaobserwowali, że geny zlokalizowane w trzecim chromosomie człowieka mogą mieć kluczowe znaczenie w określeniu, dlaczego poszczególne osoby różnie reagują na zakażenie SARS-CoV-2 i ciężej przechodzą chorobę wywołaną koronawirusem.

Zidentyfikowana przez nas zmienność genetyczna nie jest wcale rzadka, ponieważ dotyczy od kilku do kilkunastu procent populacji. Polskie badania pokazały, że w naszym kraju występuje stosunkowo często i dotyczy około 15 proc. populacji – mówi dr Chwiałkowska.

Badania naukowców mogą zostać wykorzystane w praktyce na kilka sposobów. Przede wszystkim do lepszego planowania terapii osób zakażonych tym koronawirusem. Poza tym naukowcy na tej podstawie zamierzają stworzyć test, który pomoże określić, czy pacjent jest zagrożony ciężkim przebiegiem choroby. Oprócz tego wiedza ta będzie przydatna do opracowania leków i terapii dla chorych na COVID-19.

Naukowcy nie poprzestają na tych odkryciach. Ekspertka zapowiada, że będą kontynuowane badania nad uwarunkowaniami genetycznymi podatności na zakażenia i ciężki przebieg choroby. Inny kierunek prac naukowców w najbliższym czasie to m.in. lepsze zrozumienie mechanizmów odpowiadających za tzw. long COVID czy też infekcje SARS-CoV-2 u dzieci.

Prezentacja antygenu

Prezentacja antygenu – termin obejmujący znaczeniem mechanizmy odpornościowe, które polegają na „ukazaniu” antygenu limfocytom T przy udziale cząsteczek MHC. Głównym celem prezentacji antygenów jest rozwinięcie odpowiedzi swoistej na dany antygen. Charakterystyczne jest to, że antygeny nie są przedstawiane w formie pierwotnej (natywnej), lecz w formie przetworzonej.

Ze względu na zróżnicowanie cząsteczek MHC*, prezentacja antygenu może się przejawiać w jednej z trzech postaci:


*MHC - ang. major histocompatibility complex - główny układ zgodności tkankowej. Stanowi go zespół białek odpowiedzialnych za prezentację antygenów limfocytom T.

  • Cząsteczki MHC klasy I, które prezentują antygeny limfocytom Tc (cytotoksycznym), biorą udział w obronie przeciwko patogenom wewnątrzkomórkowym, np. wirusom. Jeżeli taki antygen zostanie rozpoznany jako obcy, komórka prezentująca będzie zabita, jego obecność na cząsteczce MHC klasy I świadczy bowiem o istnieniu patogenu we wnętrzu komórki. Zabijając komórkę, limfocyt Tc zabija zwykle także występującego w niej pasożyta. Można powiedzieć, że w ten sposób jednostka (komórka) jest poświęcana dla dobra ogółu (organizmu).
  • Cząsteczki MHC klasy II, które prezentują antygeny limfocytom Th (pomocniczym), nie wywołują śmierci komórki prezentującej antygen. W tym przypadku taka komórka rozpoczyna wydzielanie cytokin, które pobudzają limfocyt Th. Limfocyty Th są istotnymi komórkami regulującymi odpowiedź odpornościową. Dzięki temu cząsteczki MHC klasy II uczestniczą w pobudzeniu innych komórek, za pośrednictwem limfocytów T pomocniczych.
  • Prezentacja krzyżowa jest mechanizmem umożliwiającym pobudzenie zarówno limfocytów Th, jak i limfocytów Tc, przy czym biorą w niej udział zarówno cząsteczki MHC klasy I, jak i klasy II. Nie jest to jednak prosta kombinacja dwóch poprzednio wymienionych rodzajów prezentacji antygenu. Zachodzi ona w charakterystyczny sposób z udziałem określonych komórek, które prezentują antygeny jednocześnie na MHC obu klas i nie są zabijane przez limfocyty Tc.


2 Makrofagi i komórki dendrytyczne należą do tzw. komórek prezentujących antygen (Antigen Presenting Cells).

 

Limfocyty – komórki T i komórki B

Limfocyty należą do krwinek białych (leukocytów) i pochodzą ze szpiku kostnego, ale migrują do różnych części układu limfatycznego, takich jak węzły chłonne, śledzona czy grasica. Są dwa główne rodzaje limfocytów: komórki T i komórki B. Układ limfatyczny obejmuje również system transportowy – układ naczyń limfatycznych – służący do transportu oraz magazynowania limfocytów. Układ limfatyczny zaopatruje/dostarcza limfocyty naszemu organizmowi i odfiltrowuje tkanki z martwych komórek i mikroorganizmów, które nas zaatakowały, takich jak np. bakterie.

Na powierzchni każdego limfocyta znajdują sie receptory, które umożliwiają im rozpoznawanie obcych substancji. Receptory te są bardzo wyspecjalizowane i pasują tylko do jednego swoistego antygenu. Aby to zrozumieć działanie takich specyficznych receptorów pomyślcie o ręce, która może chwycić tylko jeden rodzaj przedmiotu, na przykład tylko jabłko. Taka ręka byłaby prawdziwym mistrzem w chwytaniu jabłek, ale nie byłaby w stanie chwycić cokolwiek innego. W naszym organizmie taki pojedynczy receptor odpowiadałby ręce, która wychwytuje swoje „jabłka”. Limfocyty przemierzają nasz organizm póki nie natrafią na antygen, który ma właściwy kształt i  rozmiar pasujący do ich specyficznego receptora. Wydaje się, że może fakt, iż receptory każdego limfocyta mogą pasować tylko do jednego szczególnego rodzaju antygenu będzie stanowił ograniczenie, ale organizm radzi sobie z tym dzięki produkcji takiej mnogości różnorodnych rodzajów limfocytów, że układ odporności jest w stanie rozpoznać niemal każdego intruza.

Limfocyty T

Limfocyty (komórki) T tworzą dwie główne i odmienne grupy: limfocyty pomocnicze T (helper cells) i limfocyty T zabójcy (killer cells). Nazwa limfocyty T pochodzi od łacińskiej nazwy grasicy – thymus – gruczołu położonego za mostkiem. Limfocyty T powstają w szpiku kostnym,  następnie migrują do grasicy gdzie dojrzewają.

Limfocyty pomocnicze Th (helper) stanowią główną siłę napędową i regulującą układ odporności. Ich podstawowym zadaniem jest aktywacja limfocytów B oraz limfocytów T zabójców. Jednak limfocyty pomocnicze Th same muszą być wcześniej aktywowane. Dzieje się to wówczas, gdy makrofag lub komórka dendrytyczna, która wcześniej pochłonęła intruza, przemieści się do pobliskiego węzła chłonnego i zaprezentuje informację o załapanym patogenie. Komórka żerna (fagocyt) przedstawia fragment antygenu intruza na swej powierzchni w procesie znanym prezentacją antygenu. Limfocyt pomocniczy Th zostaje aktywowany, gdy jego receptor rozpozna antygen. Raz aktywowany limfocyt pomocniczy Th zaczyna się dzielić i produkować białka, które aktywują limfocyty B i T jak również inne komórki układu odporności.

Limfocyt T zabójca (killer cell) jest wyspecjalizowany w atakowaniu komórek organizmu zakażonych wirusami, a czasem bakteriami. Atakuje również komórki raka. Limfocyt T zabójca posiada receptory do wyszukiwania każdej komórki, która pasuje. Komórka, jeśli jest zakażona, jest szybko zabijana. Zakażone komórki są rozpoznawane dzięki drobnym śladom intruza - antygenowi, który może być wykryty na ich powierzchni.

Limfocyty B

Limfocyt B poszukuje antygenu pasującego do jego receptorów. Jeśli znajdzie taki antygen to przyłączy się do niego i wewnątrz limfocyta B jest uruchamiany sygnał spustowy. Ale żeby zostać w pełni aktywowanym, limfocyt B potrzebuje jeszcze białka produkowanego przez limfocyty pomocnicze Th. Gdy to nastąpi limfocyt B zaczyna się dzielić produkując swoje klony komórkowe i w czasie tego procesu powstają dwa nowe typy komórek: komórki plazmatyczne i limfocyty pamięci B.

Komórka plazmatyczna jest wyspecjalizowana w produkcji  swoistych białek zwanych przeciwciałami, które będą oddziaływać na taki antygen, który pasuje do receptora limfocyta B. Przeciwciała uwalniane przez komórki plazmatyczne potrafią wyszukać „intruzów” i pomóc w ich zniszczeniu. Komórki plazmatyczne produkują przeciwciała w niezwykłym tempie i potrafią uwalniać dziesiątki tysięcy przeciwciał na sekundę. Gdy Y-kształtne przeciwciała napotkają pasujący antygen, przyłączają się do niego. Przyłączone przeciwciała służą jako „smakowita otoczka” dla komórek żernych, takich jak makrofagi. Przeciwciała neutralizują również toksyny i unieszkodliwiają wirusy, zapobiegając zakażaniu przez nie nowych komórek. Każde ramię Y-kształtnego przeciwciała może przyłączyć się do różnego antygenu. Tak więc gdy jedno ramię łączy się z jednym antygenem na jednej komórce, to drugie ramie może przyłączać się do innej komórki. W ten sposób patogeny są zbierane w większe grupy, które łatwiej jest sfagocytować komórkom żernym. Poza tym bakterie i inne patogeny pokryte przeciwciałami są łatwiejszym celem na atak białek układu dopełniacza.

Limfocyty pamięci B (komórki pamięci B) są drugim rodzajem komórek produkowanych przez kategorię limfocytów B. Komórki te mają wydłużony okres życia i dlatego mogą „pamiętać” swoistych intruzów. Również kategoria limfocytów T może produkować komórki pamięci, mają one nawet dłuższy okres życia niż limfocyty B pamięci. Gdy intruz próbuje powtórnie zaatakować organizm, to limfocyty pamięci B oraz T, które już go znają, pomagają aktywować układ odporności znacznie szybciej. Najeźdźcy zostają wprost “wymieceni”, zanim zakażona osoba poczuje jakiekolwiek objawy. Organizm został uodporniony na intruza.

Aktywacja limfocytów pamięci B

 

Budowa układu odporności

Jak działa odporność?

Niedobory odporności

Jak dbać o odporność?

Aktualności

Europejska Agencja Leków (EMA) dopuściła do stosowania terapię genową w leczeniu ciężkiego złożonego niedoboru odporności w wyniku niedoboru deaminazy adezynowej (ADA-SCID), będącego skutkiem mutacji genetycznej - informuje New Scientist. O terapii genowej, czym jest i o jej perspektywach, można przeczytać na portalu laboratoria.net

27.12.2021
Źródło: portal internetowy Autor: Redakcja

Układy odpornościowe różnych osób mogą reagować bardzo odmiennie. Dlatego u około 90% badanych odporność immunologiczna przeciwko koronawirusowi istniała do ośmiu miesięcy po zakażeniu, ale u pozostałych 10% zakażonych już nie zauważono tak silnej odpowiedzi immunologicznej.

27.12.2021

Źródło: Puls Medycyny Autor: Marek Matacz

Brytyjscy naukowcy odkryli gen, który u ludzi przechodzących COVID-19 bezobjawowo występuje aż trzy razy częściej, niż w ogólnej populacji. Wskazuje to, że osoby z tym genem są do pewnego stopnia chronione przed chorobą wywołaną przez koronawirusa SARS-CoV-2.

27.12.2021

Źródło:Termedia Autor: Monika Stelmach

Nasze badania pozwoliły stworzyć matematyczny model, dzięki któremu możemy szacować ryzyko ciężkiego przebiegu COVID-19. Myślę, że niebawem to narzędzie może być wykorzystywane w praktyce klinicznej – mówi dr Karolina Chwiałkowska z Centrum Bioinformatyki i Analizy Danych Uniwersytetu Medycznego w Białymstoku.